Sphingomyelin distribution in lipid rafts of artificial monolayer membranes visualized by Raman microscopy.
نویسندگان
چکیده
Sphingomyelin (SM) and cholesterol (chol)-rich domains in cell membranes, called lipid rafts, are thought to have important biological functions related to membrane signaling and protein trafficking. To visualize the distribution of SM in lipid rafts by means of Raman microscopy, we designed and synthesized an SM analog tagged with a Raman-active diyne moiety (diyne-SM). Diyne-SM showed a strong peak in a Raman silent region that is free of interference from intrinsic vibrational modes of lipids and did not appear to alter the properties of SM-containing monolayers. Therefore, we used Raman microscopy to directly visualize the distribution of diyne-SM in raft-mimicking domains formed in SM/dioleoylphosphatidylcholine/chol ternary monolayers. Raman images visualized a heterogeneous distribution of diyne-SM, which showed marked variation, even within a single ordered domain. Specifically, diyne-SM was enriched in the central area of raft domains compared with the peripheral area. These results seem incompatible with the generally accepted raft model, in which the raft and nonraft phases show a clear biphasic separation. One of the possible reasons is that gradual changes of SM concentration occur between SM-rich and -poor regions to minimize hydrophobic mismatch. We believe that our technique of hyperspectral Raman imaging of a single lipid monolayer opens the door to quantitative analysis of lipid membranes by providing both chemical information and spatial distribution with high (diffraction-limited) spatial resolution.
منابع مشابه
Real-time analysis of the effects of cholesterol on lipid raft behavior using atomic force microscopy.
Cholesterol plays a crucial role in cell membranes, and has been implicated in the assembly and maintenance of sphingolipid-rich rafts. We have examined the cholesterol-dependence of model rafts (sphingomyelin-rich domains) in supported lipid monolayers and bilayers using atomic force microscopy. Sphingomyelin-rich domains were observed in lipid monolayers in the absence and presence of cholest...
متن کاملNanoscale chemical imaging of segregated lipid domains using tip-enhanced Raman spectroscopy.
Lipid domains in supported lipid layers serve as a popular model to gain insight into the processes associated with the compartmentalization of biological membranes into so-called lipid rafts. In this paper, we present reproducible tip-enhanced Raman spectra originating from a very small number of molecules in a lipid monolayer on a gold surface, probed by the apex of a nanometer-sized silver t...
متن کاملTargeting of Helicobacter pylori vacuolating toxin to lipid raft membrane domains analysed by atomic force microscopy.
The Helicobacter pylori vacuolating toxin VacA causes several effects on mammalian cells in vitro, including intracellular vacuolation, formation of pores in the plasma membrane and apoptosis. When added to cells, VacA becomes associated with detergent-resistant membranes, indicating that it binds preferentially to lipid rafts. In the present study, we have used atomic force microscopy to exami...
متن کاملLysenin: a new tool for investigating membrane lipid organization.
Sphingomyelin is a major sphingolipid species in animal cells and is a major lipid constituent of plasma membranes. Recent reports have established important roles for sphingomyelin and its metabolites as second messengers in signal transduction events during development and differentiation. Sphingomyelin is also a major component of sphingolipid, cholesterol-rich plasma membrane microdomains, ...
متن کاملLipid rafts reconstituted in model membranes.
One key tenet of the raft hypothesis is that the formation of glycosphingolipid- and cholesterol-rich lipid domains can be driven solely by characteristic lipid-lipid interactions, suggesting that rafts ought to form in model membranes composed of appropriate lipids. In fact, domains with raft-like properties were found to coexist with fluid lipid regions in both planar supported lipid layers a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 15 شماره
صفحات -
تاریخ انتشار 2015